document.write('
')
你的位置: 首页 >  常见知识 >  文章正文

万物皆可“贝叶斯”:不确定性时代的知识哲学

时间: 2021年11月25日 22:18 | 作者:朗依制药 | 来源: 医药资讯| 阅读: 130次

苏婉/文 你在黄昏的小区散步,突然看到草丛中有一个毛茸茸的东西在动。接近夜晚,光线不好,你凭借直觉判断,这大概率是那只你经常碰到的狸花猫。你继续观察,看到了它小而尖的耳朵,你加深了这就是那只花狸的信念。这时它条纹相间的尾巴露出并卷曲着晃动,你几乎可以肯定它就是那只猫了。最后这个毛茸茸的身影一闪而过,消失在灌木丛中。你回到家告诉家人:“我刚才很可能又碰到了前两天的那只大花狸!”

一个典型的贝叶斯主义者可能会告诉你,这个平常到不能再平常的观察和推测,反映了你了不起的大脑刚刚进行过一次复杂的贝叶斯计算:你从自己的直觉出发,基于依次出现的视觉信息,做出了一次对特定现象出现的原因的判断。

贝叶斯的博弈

贝叶斯的博弈:数学、思维与人工智能
作者: 黄黎原
出版社: 图灵|人民邮电出版社
译者: 方弦
出版时间: 2021-3

18世纪的英国哲学家休谟在自己的怀疑论中指出,“我们无从得知因果之间的关系,只能得知某些事物总是会关联在一起。”这种“相关非因果”的思想,体现在他在1748年写的一篇《论神迹》的文章中,他关于目击者的证词永远无法证明神迹(即基督复活)的论断,可能引起了当时作为加尔文宗教会牧师的托马斯?贝叶斯(ThomasBayes)的注意:我们真的无法通过观察到的结果来推出引起它的真正原因吗?如果我们预先形成了某种信念,需要观察到多少证据才能确定这一信念的正确性?

贝叶斯在论文中想象自己背对着一张桌子,桌子上放有一个白球,随后让助手随机在桌面上放黑球,每放一个就问白球相对于黑球的方位。白球的位置就是引起黑球处在某个相对方位的原因,这个在已知黑球相对白球位置的情况下确定白球可能位置的过程,就是一个能够回应休谟之问的典型的逆概率推算过程。对贝叶斯而言,只要放置黑球的数目足够多,对于白球绝对位置的归纳性推测就能无限逼近准确,因此,由果推因的归纳思维模式,不但有用,且并不如休谟所说,并非是非理性的。

主业是神学的贝叶斯不会想到,他自己都没有信心高调发表的概率理论(虽然按理说,他的结论与他的信仰并不违背,即神迹可以通过足够多的证据逆向证明),在他身后的数学界经历了争论与沉寂,最终在两个世纪之后,计算机甫一出现就获得重生,在人类越来越依赖并擅长处理大量数据的年代,由他命名的定理被广泛地用于医学诊断、机器学习、认知神经科学等尖端领域当中。这个原本粗略的理论雏形,经过众多天才的修正和推广,如今被看做一种主义,一种知识哲学,乃至于能够概括人类大脑认知工作的抽象模型。

《贝叶斯的博弈:数学、思维与人工智能》就是一本诠释贝叶斯定理“宇宙通用性”的著作。这本书的法语原版书名为《知识的公式:基于贝叶斯定理的统一性知识哲学》(LaFormuledusavoir:Unephilosophieunifiéedusavoirfondée surle théorème deBayes),作者是年轻的亚裔法国数学家黄黎原(LêNguyênHOANG),他毕业于巴黎综合理工学院,现在是瑞士洛桑联邦理工学院的研究人员。

黄黎原长期关注人工智能伦理问题,同时也是一个活跃且受欢迎的科普视频博主,他开设的法语视频频道“Sci-ence4All”涉及数学、计算机科学和物理学等多个领域。他在书中充满激情地盛赞了贝叶斯公式的实际有效性和哲学启发性,将之称之为“智慧方程”。这本书告诉我们,从贝叶斯公式引申出的贝叶斯方法和贝叶斯知识哲学,就像能够游遍天下的思维通票,我们甚至可以说,万物皆可“贝叶斯”。

贝叶斯公式用以描述在已知条件下某事件的发生概率,它的表达式是P(A|B)=P(A)P(B|A)/P(B)。我们可以把贝叶斯公式理解为这是一种基于现有的可靠证据(比如一些观察、数据、信息),对所持信念(比如一些假设、主张或论点)的有效性进行计算的方法,简单来讲就是,原本的信念+新证据=改进后的新信念。其中P代表概率,A表示原本的信念,B代表新证据或新条件。P(A)是A为真的概率,也被称为先验概率,是贝叶斯主义者引以为优势的“主观偏见”,但也是贝叶斯主义反对者用来攻击贝叶斯统计科学性的“弱点”所在;P(B)则是B为真的概率,也称为边缘概率或配分函数,是公式中最难计算的一项,P(B|A)表示A为真时B的概率,也被称作似然度或“需要一些想象力”的思想实验项。这个公式实际上是由法国数学家皮埃尔-西蒙·拉普拉斯(Pierre-SimonLaplace)重新发掘贝叶斯的概率思想得到的,他被认为是贝叶斯主义之父。也许像微积分公式的全称是“牛顿-莱布尼茨公式”一样,贝叶斯公式至少应被称为“贝叶斯-拉普拉斯公式”。

文章标题: 万物皆可“贝叶斯”:不确定性时代的知识哲学
文章地址: //www.pedca.com/zhishi/545160.html
Top
Baidu