你的位置: 首页> 药品知识> 文章正文

有机化学又获诺奖,药物创新发动机面临四大新课题

时间: 2021年10月14日 16:20 | 作者:朗依制药 | 来源: 医药资讯| 阅读: 145次

   10.14

  知识分子

  The Intellectual

  2021年诺贝尔化学奖授予Benjamin List和David W. C. MacMillan,以奖励他们 “对于有机小分子不对称催化的重要贡献”。

   导 读

  ✚

  ●

  ○

  今年的诺贝尔化学奖颁给了不对称有机催化。作为有机化学的博士,意外之余有点惊喜。化学奖近年来经常给了生化和材料等交叉学科,纯化学较少,被戏称为 “理综奖”。

  今年mRNA疫苗获奖的呼声很高,接连落选生理奖和化学奖,颇有些遗憾。不过从另外一个角度看,新冠口服小分子药物molnupiravir三期临床成功的消息极大提升了人类战胜新冠的信心,有机化学作为小分子药物背后的基础科技获得诺贝尔奖也算应景。

  化学与许多学科交叉,很多人将其视为其他学科的工具,有机化学又因为潜在的危险性和污染性更是不受待见。这种负面看法甚至影响到了政府的政策和学生的专业和职业选择,不利于制药、能源和材料等相关产业的发展。

  今年的诺贝尔化学奖来得非常及时,本文希望通过梳理有机化学在当前制药工业的应用前景和面临的新课题,改变普通大众对有机化学的误解和负面看法。

  撰文|谢雨礼

  责编|刘楚

  ● ● ●

1

  有机化学仍是制药行业的核心科技

  有机化学,包括天然产物化学和有机合成和方法学等是现代制药起源和发展的基石。现代制药起源于小分子化学药物,比如我们耳闻能详的药物青霉素,阿斯匹林,二甲双胍,青蒿素等。

  早期,科学家通过分离天然产物或者有机合成获得这些药物后,依靠动物模型生物活性筛选。到上个世纪五十年代,以DNA双螺旋结构为起点的分子生物学起步,基于靶点的小分子药物发现蓬勃发展,产生了他汀、拉唑、沙星以及抗病毒和肿瘤靶向药等一批改变临床实践的革命性药物。

  随后,分子生物学以及生命科技的发展,让我们能够从分子层面更好地理解生命的奥妙,包括疾病的发生发展的机理,干预靶点和治疗疾病的药物形式不再局限于小分子,逐渐多样化。

  1976年 ,赫伯特·伯耶(Herbert Boyer)和罗伯特·斯旺森(Robert Swanson)基于DNA重组技术创建了基因泰克(Genentech)公司,这被认为是现代生物制药起步的标志。

  今天,以单抗为代表的生物药已经成为一种主流药物形式,逐渐打破化学药的垄断地位,市场份额不断攀升。蛋白偶联药物、核酸、细胞疗法、肠道菌、病毒、基因疗法和基因编辑也急起直追,成为生物医药创新的前沿领域。

  这种态势下,有人认为传统化药到头了,其背后的有机化学也没有那么重要了。

  这显然是一个误解。 以新冠药物molnupiravir受到业界极大关注为例,小分子新冠抗病毒药物仍然有着不可忽略的优势。

  主要原因有:

  1

  小分子口服的方便性,特别是针对疫情这样的大规模病人群体和长期用药的慢性病;

  2

  成本的优势,大规模生产和居家治疗的经济性。社会老龄化,各国医保面临巨大压力,某种意义上价廉也是一种临床需求;

  3

  机制不明的复杂疾病,仍靠表型筛选获得小分子药物;

  4

  小分子与抗体,核酸和细胞等药物比较,疗效并不是零和的竞争关系,更多的是互相补充。可以说,小分子药物和技术永远也不会过时,仍在纵深发展。

  有机化学对于医药行业的重要性也没有下降。一方面,有机化学依然是驱动小分子药物和技术创新的动力;另一方面,有机化学也是新兴生命科技必不可少的赋能工具。

  自人工合成尿素以来,有机合成已有近200年历史,技术进展至 “没有合成不了的分子”,但在制药领域远非充分和完善。

  作为制药工业创新的发动机,有机化学当前面临许多新课题,包括扩展小分子药物的化学空间、开发环保经济的生产工艺、智能化和自动化以及生物医药新技术的发展等。

2

  课题一:扩展小分子药物的化学空间

  与天然产物复杂多样的结构比较,目前合成药物所涉及的化学骨架只是冰山一角。现有药物分子大致可以归纳到32种化学骨架,大部分含有常见的20种侧链 [1]。

  考虑到起始原料、合成难度、反应条件以及时间和资源的限制,药物化学家一般倾向使用少数可靠通用的化学反应,导致药物分子局限在比较窄的化学空间。

  据统计 [2],过去三十年最常用的药物化学反应中,排在前三位的占到所有反应的64%,包括酰胺键的形成, Suzuki−Miyaura偶联反应以及SNAr芳香取代反应。

  这种习惯操作导致发现新药的机会减少,也为药物后续开发带来系统性困难。比如,由于金属催化的偶联反应大规模使用,导致联苯结构在化合物库和候选药物分子中过度集中。联苯等平面结构化合物一般溶解性较差,给制剂带来挑战。另外,去除金属杂质也成为工艺开发的重要课题。因此,发现更多简单方便、手性可控、功能和位置选择性高的新反应和新化学对于扩展小分子药物的化学空间至关重要。

  过去20年,涌现了不少革命性的化学反应和方法,其中金属催化的不对称氢化和环氧化、烯烃复分解反应、偶联反应,以及有机小分子不对称催化已经获得诺贝尔奖的认可。

  就制药行业来说,这还远远不够,药物化学家希望能够自由编辑有机分子,也就是在多种官能团存在下,特异性地插入、删除、交换和构建分子中的原子和官能团 [3]。

  近年来,以C-H和C-C活化为核心的分子后期功能化(LSF)朝着分子编辑这一目标迈进了一大步(图1)。比如,亲电的氟试剂NFSI,亚磺酸盐介导的自由基氟烷基化,以及可见光氧化还原催化的CF3偶联反应可以在后期方便地引入药物改造中最受欢迎的氟原子 [4-6]。

  以Suzuki−Miyaura、Negishi、Buchwald-Hartwig、Chan-lam和Ullmann为代表的偶联反应是药物化学和工艺化学中构建C-C键和C-N键最常用的反应,近年来也不断进化和改善,增加药物分子常见的氮杂环和极性官能团的耐受性,底物范围不断扩大。

  偶联反应的下一个热门方向是季碳(Csp3)的构建,包括sp3-sp2,sp3-sp3,sp3-N 偶联等 [7]。

  引入季碳的优点是化学空间呈指数级增加,有望克服药物分子骨架缺乏多样性的瓶颈。然而,其缺点同样明显。季碳引入手性中心,异构体、杂质数量以及工艺开发难度也大幅增加,给药物后续开发带来挑战,因此理想的季碳偶联应该是立体选择性的。

  另外一种构建含有多个季碳、类似于天然产物分子骨架的方法是平面结构的还原。比如,上海有机所游书力实验室发展了系列不对称去芳构化反应,可以从芳香化合物直接合成天然产物和药物分子中广泛存在的季碳中心和螺环结构 [8]。多组分反应、多样性导向合成(DOS)、点击化学以及DNA模板化学反应和DNA编码化合物库等策略和技术也在尝试新的反应和方法,保持化合物数量优势的同时克服多样性不够的缺点。

文章标题: 有机化学又获诺奖,药物创新发动机面临四大新课题
文章地址: //www.pedca.com/yaopin/534112.html
Top
Baidu